ทิป/คำแนะนำ/การประยุกต์ ใช้ตะแกรงระบายน้ำสำเร็จรูป ให้เหมาะสมพอดีกับ บ่าเหล็กฉากรางน้ำ
Tips/Technics/Trick/How-to Designing the right size Steel Angle Bar Frame fit for Grating
        เป็นรางระบายน้ำเก่าหรือสร้างใหม่ ถ้าเป็นรางเก่าที่มีบ่ารองรับตรงกันก็ซื้อไปวางได้เลย
FRP FibreGlass Grating Test Certificates ผลทดสอบ การรับแรง การทนสารเคมี ฝาปิดบ่อพัก ตะแกรงไฟเบอร์กล๊าสเสริมแรง
CHANCON provides consultation and complete know-how for Technical Solutions that match your site conditions, upon request.
Definition of Fiberglass and Application
Fiberglass is a type of reinforced plastic material that is made up of fine fibers of glass. These fibers are woven together to form a mat, which is then coated with a resin to create a strong and durable material that can be molded into various shapes.
Fiberglass is used in a wide range of applications, including:
Construction: Fiberglass is commonly used in construction to reinforce concrete, create insulation, and make roofing materials.
Automotive industry: Fiberglass is used in the manufacturing of automotive components such as car bodies, hoods, and fenders due to its lightweight and high strength properties.
Aerospace industry: Fiberglass is also used in the aerospace industry to create lightweight and durable components for airplanes and spacecraft.
Sports equipment: Fiberglass is used in the production of sports equipment such as skis, surfboards, and kayaks due to its strength and flexibility.
Wind energy: Fiberglass is used in the manufacturing of wind turbine blades because of its ability to withstand high wind speeds.
        Some of the benefits of using fiberglass include its high strength-to-weight ratio, durability, resistance to moisture and chemicals, and flexibility. It is also a cost-effective alternative to other materials such as steel or aluminum, and it can be easily molded into various shapes and sizes.
ที่มาเกี่ยวกับไฟเบอร์กลาส | History of FRP FibreGlass
        Fiberglass grating is a type of grating made from reinforced fiberglass materials that are commonly used in industrial and commercial applications. It is made by weaving together continuous fiberglass strands, then reinforcing them with a resin binder to form a strong and durable material.
Fiberglass grating is used in various applications such as:
Flooring and decking: Fiberglass grating is commonly used as an alternative to steel grating for walkways, decks, and flooring in areas that require corrosion resistance and anti-slip properties.
Industrial platforms and stair treads: Fiberglass grating is used to create sturdy, anti-slip platforms and stair treads in industrial and commercial environments.
Drainage systems: Fiberglass grating is used in drainage systems as it is resistant to chemicals and can withstand harsh environments.
Walkways and bridges: Fiberglass grating is used to construct pedestrian walkways, bridges, and ramps due to its high strength and durability.
        Some of the benefits of using fiberglass grating include its lightweight, non-conductive properties, high strength, and resistance to chemicals, corrosion, and UV rays. It is also easy to install and requires minimal maintenance. Additionally, fiberglass grating is less expensive than traditional materials such as steel and aluminum.
Overall, fiberglass grating offers a cost-effective, durable, and versatile solution for a wide range of industrial and commercial applications.
       
Fiberglass grating is a type of grating made from reinforced fiberglass materials that are commonly used in industrial and commercial applications. It is made by weaving together continuous fiberglass strands, then reinforcing them with a resin binder to form a strong and durable material.
The specifications of fiberglass grating vary depending on the intended application, but there are some general characteristics that are typical of this material:
Mesh Size: Fiberglass grating typically comes in a variety of mesh sizes, ranging from fine to coarse. The mesh size is determined by the spacing of the fiberglass strands and can be tailored to the specific application.
Panel Size: Fiberglass grating panels are available in standard sizes, but custom sizes can also be produced to meet specific requirements.
Thickness: The thickness of fiberglass grating can vary depending on the application and load requirements. Standard thicknesses range from 1/4" to 2".
Surface Treatment: Fiberglass grating can be coated with a variety of surface treatments, including resin top coats, grit, and slip-resistant coatings.
Color: Fiberglass grating is available in a range of colors to match the surrounding environment or to provide visual indicators for safety purposes.
Load Capacity: Fiberglass grating can be designed to withstand a wide range of load capacities, from light pedestrian traffic to heavy machinery loads.
Corrosion Resistance: Fiberglass grating is highly resistant to corrosion, making it suitable for use in harsh environments where traditional metal grating may corrode.
Fire Resistance: Fiberglass grating can be made fire-resistant by adding fire-retardant additives to the resin binder.
       
Overall, the specifications of fiberglass grating can be customized to meet the specific requirements of the application, making it a versatile and reliable material for a wide range of industrial and commercial uses.
        Our molded fiberglass grating and pultruded fiberglass grating provide unmatched corrosion resistance properties, especially when compared to steel flooring products. Strength, long life and safety are also superior qualities of our fiberglass grating products, and their electrically non-conductive properties make them the ideal option for floor grating.
We offer many types of fiberglass grating for all your different loading applications. Fiberglass grating applications range from architectural sun screening and fiberglass flooring to standard walkways and high load rolling applications. Grit surfaces and standard stock colors or custom colors are provided to suit your fiberglass application. Choose from our custom resin types for a fiberglass flooring product that is tailored to suit your corrosion resistance needs.
Molded fiberglass grating is a fiberglass-reinforced plastic (FRP) that combines fiberglass rovings with thermosetting resins to form a strong, one-piece molded panel. A 65%/35% resin to glass weight ratio provides high corrosion resistance. Meniscus surfaces or applied grit surfaces provide slip resistance when compared to steel flooring and other flooring products. This fiberglass grating product is better suited for corrosive environments.
Pultruded Pultruded Fiberglass Grating
Pultruded fiberglass grating is made using premium grade isophthalic polyester, vinyl ester or phenolic resin systems with a synthetic surfacing veil, making it corrosion resistant, lightweight and durable. Pultruded fiberglass has a grit surface for safety and a greater strength to weight ratio than molded fiberglass grating. A 35%/65% resin to glass ratio provides greater strength and less corrosion resistance than molded fiberglass grating. This product is better suited for longer spans of fiberglass flooring.
Fiberglass Covered Grating Our fiberglass covered grating is a long-lasting, molded fiberglass flooring product that combines smooth, gritted or checker plate and molded grating manufactured with any of our resin systems. It is the ideal choice when floor grating needs to be 100% covered. Our fiberglass covered grating is often used in loading and storage areas with high foot and cart traffic, where a strong, level surface is ideal. It offers approximately 50% higher stiffness values than that of open mesh grating and its standard grit-top cover assures secure footing.
Bullet Resistant Fiberglass Plate Our bullet resistant fiberglass plate offers superior ballistic resistance at a weight less than 25% that of a comparable steel panel. Now available for commercial security fiberglass applications for your business, home or governmental facility, these fiberglass panels offer ballistic resistant security with the additional performance advantages of durability, corrosion resistance, electrical non-conductivity, low thermal conductivity and light weight.
Heavy Duty Fiberglass Grating Our heavy duty fiberglass grating is available in both molded and pultruded grating systems. Both types of heavy duty fiberglass grating are designed to carry forklift and tractor-trailer loads that traditional molded and pultruded FRP grating products are not designed to support. Heavy duty fiberglass grating provides greater durability for higher volume traffic areas as well. Additionally, Heavy Duty Fiberglass Grating can be used to free span longer distances than traditional fiberglass grating.
Fiberglass Stair Treads and Fiberglass Stair Tread Covers Lightweight and easy to install, fiberglass stair treads are available in both molded and pultruded types to match the fiberglass floor grating platforms. Fiberglass stair tread covers are made from a molded glass and resin system that is corrosion and impact resistant, fire retardant and non-conductive. They provide a cost effective, slip-resistant protective surface for concrete, metal and wood steps.
Fiberglass Grating Handrails and Fiberglass Ladders Fiberglass Grating Handrails and Fiberglass Ladders
Fiberglass handrail systems are fabricated from pultruded fiberglass components and molded thermoplastic connectors. Our modular fiberglass grating handrail systems are available in 2-inch square or 2-inch round configurations that are easy to grip, making them ideal for any high traffic area. Our fiberglass ladders and cages can be installed in a variety of applications from sump pumps to tanks, buildings, piers, portable equipment, etc., providing years of strength and dependability.
Fiberglass Attachments and Fiberglass Clips Our fiberglass grating attachments and clips are specially designed to secure fiberglass grating or plates to the supporting structures. Additionally, they are used to fasten together adjacent grating panels, which minimizes load-induced differential deflection. All fiberglass attachments and clips are made of Type 316 stainless steel and are available in 1-, 1-1/2- and 2-inch sizes.
Fiberglass plates feature a non-conductive surface that makes them an economical and safe solution to walking surfaces. In caustic and/or acidic conditions, fiberglass plates provide a level of corrosion resistance that is unequaled and more cost effective than stainless steel. Fiberglass plate is available with a non-grit surface or with a grit surface where anti-slip traction is needed.
Fiberglass Structural Shapes Our fiberglass structural shapes and pultruded fiberglass profiles are made from a combination of fiberglass and thermosetting resin systems. All shapes are lightweight, impact resistant, low maintenance, non-magnetic, low conductive and have dimensional stability, making them easy to install and ideal for several applications. Custom shapes are available upon request.
Composite (GFRP) Gratings : What is GFRP (Glass Fiber Reinforced Plastic)?
GFRP is a composite material made of a polymer matrix reinforced with fiber, aiming to form better physical and chemical properties. GFRP is a production material such as metal, wood, glass, concrete. GFRP materials has important advantages as against other production materials, new features can be acquired according to requirements.
What is GFRP Grating?
Molded GFRP gratings are produced in special molds with wet lamination process, consist of glass fiber, resin, additives and pigment. After these raw materials harden, GFRP gratings are pressed out of the mold. Molded GFRP gratings are light, anti-corrosive, have high chemical and physical resistances and electrically non-conductive.
Components: Resin, glass fiber, additives and pigment are the basic components of the GFRP materials. It can be produced any material which are proper for the requirements by changing these components.
Resin: Chemical resistance, flexibility and UV resistance of the GFRP gratings are determined by the resin. Resins are chose according to the environment; orthophthalic resin for general usage, isophthalic resin for chemical environment and vinyl ester resin for extremely heavy chemical environment.
Glass Fiber: Multi-layered continuous glass fibers are used in production. Molded GFRP gratings have high mechanical resistance due to glass fiber.
Additives: Additives such as UV stabilizers, flame retardants and low smoke density retardants increase mechanical and chemical resistance and add new superior features.
Pigment: Pigments make it possible to give the GFRP gratings any color. This makes it happen to use GFRP gratings in architectural projects.
Fibre-reinforced plastic (FRP) (also called fibre-reinforced polymer, or fiber-reinforced plastic) is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, or asbestos have been used. The polymer is usually an epoxy, vinylester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.
FRPs are commonly used in the aerospace, automotive, marine, and construction industries. They are commonly found in ballistic armor as well.
A polymer is generally manufactured by step-growth polymerization or addition polymerization. When combined with various agents to enhance or in any way alter the material properties of polymers the result is referred to as a plastic. Composite plastics refer to those types of plastics that result from bonding two or more homogeneous materials with different material properties to derive a final product with certain desired material and mechanical properties. Fibre-reinforced plastics are a category of composite plastics that specifically use fibre materials to mechanically enhance the strength and elasticity of plastics.
The original plastic material without fibre reinforcement is known as the matrix or binding agent. The matrix is a tough but relatively weak plastic that is reinforced by stronger stiffer reinforcing filaments or fibres. The extent that strength and elasticity are enhanced in a fibre-reinforced plastic depends on the mechanical properties of both the fibre and matrix, their volume relative to one another, and the fibre length and orientation within the matrix.[1] Reinforcement of the matrix occurs by definition when the FRP material exhibits increased strength or elasticity relative to the strength and elasticity of the matrix alone.
FRP can be applied to strengthen the beams, columns, and slabs of buildings and bridges. It is possible to increase the strength of structural members even after they have been severely damaged due to loading conditions. In the case of damaged reinforced concrete members, this would first require the repair of the member by removing loose debris and filling in cavities and cracks with mortar or epoxy resin. Once the member is repaired, strengthening can be achieved through wet, hand lay-up of impregnating the fibre sheets with epoxy resin then applying them to the cleaned and prepared surfaces of the member.
Two techniques are typically adopted for the strengthening of beams, relating to the strength enhancement desired: flexural strengthening or shear strengthening. In many cases it may be necessary to provide both strength enhancements. For the flexural strengthening of a beam, FRP sheets or plates are applied to the tension face of the member (the bottom face for a simply supported member with applied top loading or gravity loading). Principal tensile fibres are oriented in the beam longitudinal axis, similar to its internal flexural steel reinforcement. This increases the beam strength and its stiffness (load required to cause unit deflection), however decreases the deflection capacity and ductility.
For the shear strengthening of a beam, the FRP is applied on the web (sides) of a member with fibres oriented transverse to the beam's longitudinal axis. Resisting of shear forces is achieved in a similar manner as internal steel stirrups, by bridging shear cracks that form under applied loading. FRP can be applied in several configurations, depending on the exposed faces of the member and the degree of strengthening desired, this includes: side bonding, U-wraps (U-jackets), and closed wraps (complete wraps). Side bonding involves applying FRP to the sides of the beam only. It provides the least amount of shear strengthening due to failures caused by de-bonding from the concrete surface at the FRP free edges. For U-wraps, the FRP is applied continuously in a 'U' shape around the sides and bottom (tension) face of the beam. If all faces of a beam are accessible, the use of closed wraps is desirable as they provide the most strength enhancement. Closed wrapping involves applying FRP around the entire perimeter of the member, such that there are no free ends and the typical failure mode is rupture of the fibres. For all wrap configurations, the FRP can be applied along the length of the member as a continuous sheet or as discrete strips, having a predefined minimum width and spacing.
Slabs may be strengthened by applying FRP strips at their bottom (tension) face. This will result in better flexural performance, since the tensile resistance of the slabs is supplemented by the tensile strength of FRP. In the case of beams and slabs, the effectiveness of FRP strengthening depends on the performance of the resin chosen for bonding. This is particularly an issue for shear strengthening using side bonding or U-wraps. Columns are typically wrapped with FRP around their perimeter, as with closed or complete wrapping. This not only results in higher shear resistance, but more crucial for column design, it results in increased compressive strength under axial loading. The FRP wrap works by restraining the lateral expansion of the column, which can enhance confinement in a similar manner as spiral reinforcement does for the column core.
Molded Grating Pedestals โรงงานผู้ผลิตเกรตติ้งฝาบ่อฝาท่อตะแกรงระบายน้ำ grating manhole
Fibergrate Adjustable Grating Pedestals are high quality components designed to support elevated grating applications. Infinitely adjustable within their specified range, standard pedestals raise grating platforms and custom pedestals with cross bracing can raise floors above the base elevation.
Pedestals are available for 1", 1-1/2" and 2" deep square mesh Fibergrate or Chemgrate molded fiberglass gratings. Pedestal heads are stocked in "single head" and "quad head" designs facilitating quick, safe and economical installation of elevated platforms.
ADJUSTABLE - Create level walking surfaces on sloping floors
VERSATILE - Available for all Fibergrate and Chemgrate square mesh gratings
COST EFFECTIVE - Low installation cost, easily relocated to other areas
LIGHTWEIGHT - Modular, adjustable components are lightweight and reduce lifting
CORROSION RESISTANT - Thermoplastic polyester and pultruded vinyl ester are resistant to most industrial wet-floor applications
Grating Pedestal Supports
Fibreglass Grating ? Grating Pedestal Supports
From time to time, FRP grating will need to be supported in walkway areas where using traditional support and framing methods either cannot be used or are unsuitable to the working environment.
Areas, such as, Chemical bunds, Raised floor platforms & work stations, Chemical Treatment Dosing Plant Rooms, Raised non slip walkway access across drainage floors and work spaces,
Suspended floor grating, cable ladder runs, concealing pipe work and electrical services underneath, Areas required to be non conductive.
our FRPP pedestal supports that can raise our FRP floor grating, and link into the mesh pattern of our grating. The panels of our grating can be joined, on the one pedestal eliminating multiple pedestals in the same area. The wide based pedestals can be fixed to the floor if required, and also to the top of our grating, using our 316 s/s hold down clips to suit. This provides an extremely solid base, which can take high loads. Available in a range of heights, and completely adjustable to accommodate uneven floors, we can supply a pedestal to suit your application.
FRP Stair Solutions - Stair Treads
Fiberglass stair treads and stair covers are an essential complement to molded and pultruded grating installations. These corrosion and slip resistant treads are manufactured with a defined visible nosing and provide safe footing in the most challenging environments.
Stair treads and covers can be supplied cut to precise customer specified sizes or in stock panels that are easily field fabricated.
stair tread covers are a convenient way to provide solid slip-resistant footing for existing treads that are still structurally sound. Stair tread covers may be installed over wood, concrete or metal treads. Standard industrial color is dark gray with a highly visible safety yellow nosing and light gray for architectural applications.
An integral aluminum oxide grit-top surface provides secure footing for maximum safety and a highly durable tread. Reinforced with a woven glass mat for durability and impact resistance, these tread covers come in made to order widths. The standard thickness is various thick covers available for heavy duty applications. Standard long panels are easily cut to size during installation, or are available precut to custom lengths.
Phosphorescent Nosing :Fiber plate stair tread covers can be ordered with a special phosphorescent coating for the nosing area, causing it to glow even after the primary light source has been removed. The special nosing is perfect in stairways which serve as emergency exits during power outages, outdoor accessways where lighting is periodically dimmed as in arenas and concert halls or as a safety measure for nighttime operation in outdoor applications such as on passenger ships. This special nosing has been tested in accordance with ISO/TC Ships and Marine Technology - Low Location Lighting on Passenger Ships.
Fibreglass Grating > FRP Tread Covers > Tread Grip
Some superior features of TreadGrip are.
Durability: TreadGrip is a high quality composite of glass woven matting impregnated with isophthalic polyester resin. The energy absorption and flexibility of TreadGrip. ensures its long life, even in the busiest of environments.
Slip Resistant: A compound of carbon and silicon grit is added in the final layer of laminate providing a superb slip resistant and hard wearing surface.
Corrosion Resistant: TreadGrip is resistant to a wide range of chemicals and is perfectly suited for use even in the harshest of environments. Chemical resistance guides available on request.
Simple to install: The versatility of TreadGrip. allows it to be applied to almost any surface such as concrete, steel or wood. The fact that it is supplied as a finished product means that it can be walked on straight away thus keeping disruption to a minimum.
supply FRP stair treads in both molded and pultruded grating profiles. Available in isopthalic, vinyl ester and phenolic fire retardant resin systems, to suit both industrial and domestic applications.
Molded FRP stair treads come with a contrast nose edge as required by the Australian Standards for stairways to have a contrasting front edge (nosing) colour for ascending and descending stairs resulting in a safer stairway.
Generally our stair treads colours are: Grey with yellow nosing. Other colours are available should you wish to match up with aesthetics and / or the environment.
Available in our standard tread panels or we can cut to size, we welcome your enquiry.
Our standard treads have an anti slip grit top surface, but we can also supply treads with a concave top which is also anti slip, but easy to clean, for example, for the food and beverage industry. Our treads are secured to the angle supports underneath using our 316 s/s Type M hold down clips you can see those in the molded grating index on the Installation Accessories page.
If you own a building, run a business or manage a public space that has stairs then you are obliged to ensure that everyone using the stairs is safe. Anti Slip Stair Nosing is an excellent way to ensure that the stairs are as safe as possible.
Anti Slip Stair Nosing can reduce the chances of accidents occurring dramatically. The leading edge of a stair can become slippery when wet and even internal stairs can become slippery during rain as people track the water inside. With high quality Edge Grip FRP Anti Slip Stair Nosing from Monaco you can make sure that the leading edge of the stairs are not slippery even in the wettest conditions.
These anti slip stair nosings can be fitted in many different situations, including the following, public spaces, commercial areas and industries:
Railway stations , Public squares and parks, Milking sheds,Industrial tank stairs,Industrial and commercial sites,Schools,Ski fields,Fire escapes, Oil rigs Ports
Our Edge Grip FRP Anti Slip Stair Nosing comes in pre-formed robust fibreglass panels that are incredibly durable and the silicone carbon grit top finish provides a highly slip resistant surface. We offer two slip resistant surfaces, one light grit made for interior situations and the other heavier grit made for exterior uses.
Edge Grip FRP Anti Slip Stair Nosing has a patented featheredge meaning that it can be fitted to virtually every type of step without creating a trip hazard making it the safest all-round Anti Slip Stair Nosing.
8. ระยะเวลาการผลิตและจัดส่งสินค้าภายในกี่วัน/ Production to delivery ทุกสินค้ามาตรฐานของบริษัท มีสต๊อคพร้อมส่งได้ทันที สามารถสั่งตัดได้กรณีเป็นฝาท่อ FRP Top Cover และ ตะแกรง FRP
      ABS (Acrylonitrile Butadiene Styrene) is a commonly used thermoplastic polymer that is known for its durability and strength. It is often used in applications where impact resistance and toughness are essential. ABS is lightweight, resistant to heat and chemicals, and easy to shape and mold.
      ABS is a low cost engineering plastic that is easy to machine and fabricate. ABS is an ideal material for structural applications when impact resistance, strength, and stiffness are required.
It is widely used for machining pre-production prototypes since it has excellent dimensional stability and is easy to paint and glue.
Natural (beige) ABS and black ABS are FDA compliant for use in food processing applications.
The following physical property information is based on typical values of the base acrylonitrile-butadiene-styrene resin.
      An ABS overflow grating is a type of grating used in swimming pools and other water features to prevent overflow and improve water circulation. It is made of ABS plastic material, which is corrosion-resistant and can withstand exposure to chlorine and other chemicals commonly used in swimming pools.
      ABS overflow gratings are available in different sizes, shapes, and colors to match the design and style of the pool. They are easy to install and maintain, and can provide long-lasting performance in harsh pool environments.
        What is Polypropylene (PP), and What is it Used For?        
Polypropylene (PP) grating is a type of plastic grating that is widely used in various industrial and commercial applications. It is made from high-density polypropylene resin and is known for its high strength, durability, and resistance to chemicals and UV radiation.
The specifications of polypropylene grating may vary depending on the application and the manufacturer, but some general specifications include:
- Material: High-density polypropylene resin
- Mesh size: Typically ranges from 12mm to 50mm
- Thickness: Typically ranges from 15mm to 60mm
- Panel size: Can be customized according to the application
- Color: Typically gray or black, but other colors may be available upon request
- Load capacity: Varies depending on the size and thickness of the grating
        Polypropylene grating is commonly used in the following applications:
Industrial flooring: Polypropylene grating is an ideal flooring material for industrial environments because of its high strength and chemical resistance. It is commonly used in chemical plants, oil and gas refineries, and other heavy-duty industrial settings.
Walkways and bridges: Polypropylene grating can be used to create walkways and bridges in wet or corrosive environments. It is also commonly used in parks and recreation areas as a non-slip surface.
Drainage systems: Polypropylene grating can be used in drainage systems to prevent clogging and facilitate the flow of water. It is commonly used in stormwater management systems and wastewater treatment plants.
Aquaculture: Polypropylene grating is used in aquaculture applications to create walkways, docks, and platforms. Its resistance to chemicals and UV radiation makes it an ideal material for use in marine environments.
       
Overall, polypropylene grating is a versatile and durable material that can be used in a wide range of applications where strength, durability, and chemical resistance are required.
      Some of the most significant properties of polypropylene are:
Chemical Resistance: Diluted bases and acids dont react readily with polypropylene, which makes it a good choice for containers of such liquids, such as cleaning agents, first-aid products, and more.
Elasticity and Toughness: Polypropylene will act with elasticity over a certain range of deflection (like all materials), but it will also experience plastic deformation early on in the deformation process, so it is generally considered a "tough" material. Toughness is an engineering term which is defined as a material's ability to deform (plastically, not elastically) without breaking..
Fatigue Resistance: Polypropylene retains its shape after a lot of torsion, bending, and/or flexing. This property is especially valuable for making living hinges.
Insulation: polypropylene has a very high resistance to electricity and is very useful for electronic components.
Transmissivity: Although Polypropylene can be made transparent, it is normally produced to be naturally opaque in color. Polypropylene can be used for applications where some transfer of light is important or where it is of aesthetic value. If high transmissivity is desired then plastics like Acrylic or Polycarbonate are better choices.
     
Polypropylene is classified as a thermoplastic (as opposed to thermoset) material which has to do with the way the plastic responds to heat. Thermoplastic materials become liquid at their melting point (roughly 130 degrees Celsius in the case of polypropylene). A major useful attribute about thermoplastics is that they can be heated to their melting point, cooled, and reheated again without significant degradation. Instead of burning, thermoplastics like polypropylene liquefy, which allows them to be easily injection molded and then subsequently recycled. By contrast, thermoset plastics can only be heated once (typically during the injection molding process). The first heating causes thermoset materials to set (similar to a 2-part epoxy) resulting in a chemical change that cannot be reversed. If you tried to heat a thermoset plastic to a high temperature a second time it would simply burn. This characteristic makes thermoset materials poor candidates for recycling.